Evaluation of pregermination treatments on seeds of drinking molle (Lithraea molleoides(Vell) Engl.)
DOI:
https://doi.org/10.63207/ai.v8i16.161Keywords:
germination, thermal treatments, Anacardiaceae, Lithraea molleoidesAbstract
Lithraea molleoides (Vell.) Engl., is a dominant tree species of the Anacardiaceae family in the Serrano Chaco, characterized by its orophilic habitat. The propagation of this species is limited by the low germination of its seeds, which makes it necessary to develop effective pre-germination treatments. This study evaluated the effect of different heat treatments on the germination of L. molleoides for 30 days, through periodic observations. Five treatments were applied: prolonged immersion at 100°C (T1) and 85°C (T2) for 48 h; brief immersion at 100°C (T3) and 85°C (T4) for 5 min; and one control without heat treatment (T5). The results showed significant differences in germinative power between treatments (p < 0.0001). The highest germination percentages were obtained with the treatments at 85°C (T2: 44%; T4: 43%), significantly surpassing the treatments at 100°C (T1: 9%; T3: 12%) and the control (T5: 7%). These results demonstrate that temperatures of 85°C, regardless of the exposure time (5 min or 48 h), optimize the germination of L. molleoides, probably by enhancing seed coat permeability without damaging the embryo.
Downloads
References
Baskin, C. C., & Baskin, J. M. (2021). Seeds: Ecology, biogeography, and evolution of dormancy and germination (2nd ed.). Academic Press.
Bewley, J. D., Bradford, K. J., & Hilhorst, H. W. M. (2022). Seeds: Physiology of development, germination and dormancy (4th ed.). Springer Nature.
Fernández-Pascual, E., Seal, C. E., & Pritchard, H. W. (2021). Simulating the germination response to diurnally alternating temperatures under climate change scenarios: Comparative studies on Carex diandra seeds. Annals of Botany, *127*(6), 807-817.
Gomes, M. P., Garcia, Q. S., Oliveira, J. A., Silva, F. G., & Ribeiro, D. M. (2023). Cellular damage markers in heat-treated seeds: Histological and biochemical approaches. Seed Science Research, 33(1), 12–25.
Gomes, M. P., Garcia, Q. S., & Oliveira, J. A. (2023). Seed priming with phytohormones: A strategy to enhance germination under abiotic stress. Plant Growth Regulation, *99*(1), 1-15.
International Seed Testing Association [ISTA]. (2023). International rules for seed testing. https://www.seedtest.org/en/international-rules-_content---1--1083.html
Lamont, B. B. & He, T. (2022). «Fire-mediated germination syndromes in Mediterranean ecosystems». Trends in Plant Science, 27(7), 668-681.
Lamont, B. B., Pausas, J. G., & He, T. (2024). Fire as a key driver of seed traits in Mediterranean ecosystems. Trends in Plant Science, *29*(2), 123-135.
Landis, T. D., Dumroese, R. K., & Haase, D. L. (2021). The Container Tree Nursery Manual: Volume 2 – Containers and Growing Media. USDA Forest Service.
Moreira, B., Castellanos, M. C., & Pausas, J. G. (2020). Fire-driven germination in Mediterranean basins: Heat shock thresholds and their interaction with water availability. Plant Ecology, 221(7), 569–581. https://doi.org/10.1007/s11258-020-01034-z
Moreira, Tavşanoğlu, Ç., & Pausas, J. G. (2021). Lethal temperature thresholds for seed germination in Mediterranean species. Plant Ecology, 222(3), 433–445.
Moreira, B., Castellanos, M. C., & Pausas, J. G. (2021). Fire-related cues break physical dormancy in Mediterranean Basin flora. Annals of Botany, 127(5), 647–659.
Nonogaki, H. (2019). Seed germination and dormancy: The classic story, new puzzles, and evolution. Journal of Integrative Plant Biology, *61*(5), 541-563.
Oliveira, G., Ribeiro, J. S., & Santos, T. M. (2023). Optimizing peat-perlite-sand mixes for seed germination: Physical properties and seedling performance. Scientia Horticulturae, *321*, 112289.
Pausas, J. G., Lamont, B. B., Paula, S., & He, T. (2022). “Duration and intensity of heat shocks affect germination differently in fire-prone ecosystems”. Frontiers in Plant Science, 13, 891543.
Pedrini, S., Balestrazzi, A., Madsen, M. D., & Bhalsing, K. (2020). Seed enhancement: Getting seeds restoration-ready. Restoration Ecology, *28*(S3), S266-S275.
Peguero-Pina, J. J., Mendoza-Herrer, Ó., Morales, F., & Gil-Pelegrín, E. (2022). Hydric and light regulation of seed germination in Mediterranean trees: Ecological implications under climate change. Forests, *13*(2), 323.
Pereyra, D. A., Gurvich, D. E., & Funes, G. (2024). Thermal scarification protocols for native species of the Gran Chaco. Neotropical Ecology, 12(1), 45–60.
Pritchard, H. W., Daws, M. I., & Mattana, E. (2023). «Water relations in seed germination: New thresholds for tropical species». Seed Science Research, 33(1), 45-58.
Torres, R. C., Renison, D., & Tecco, P. A. (2023). «Seed germination constraints in Argentinean dry forest species: Climate change implications”. Forest Ecology and Management, 529, 120697.
Vázquez-Yanes, C., Orozco-Segovia, A., & Sánchez-Coronado, M. E. (2022). “Seed vigour and hydration dynamics in pioneer species: Implications for ecological restoration”. Journal of Seed Science, 44(3), e2022440302.
Zapater, M. A., Campos, C. M., & Tálamo, A. (2021). “Historical fragmentation explains current distribution patterns in seasonally dry tropical forest species”. Journal of Biogeography, 48(5), 1189-1203.
Zhang, H., Liu, X., & Wang, Y. (2022). Mechanical scarification and hydrogen peroxide breaking seed dormancy in native legumes: Implications for ecological restoration. Journal of Environmental Management, *305*, 114387.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kevin Joao Palacios Ballesteros, José Omar Plevich, Juan Carlos Tarico, Marco Jesús Utello

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














