Effects of the application of different sources of foliar Silicon in the cultivation of pepper, Var: Yolo Wonder
DOI:
https://doi.org/10.5281/zenodo.13136285Keywords:
silicon, pepper plants, foliar chemistry, growth impactAbstract
Currently, one of the elements that has gained prominence in crop optimization is Silicon (Si), a mineral that has traditionally been underestimated, however, it plays a vital role in the well-being of plants. The objective of this study was to evaluate the effect of different sources and foliar doses of Si on the development and assimilation of nutrients in the pepper crop. The experimental design corresponds to a DCA. The results showed that there were no significant differences in the biometric variables, such as plant height, stem diameter and the number of leaves, flowers and fruits, between the Si source and dose treatments. This suggests that the Si doses evaluated did not have a substantial effect on the overall growth of pepper plants. However, significant effects of Si were observed on the foliar chemistry of the plants. Si treatments showed lower concentrations of nitrate and potassium compared to the control group. In addition, higher sodium concentrations were recorded in some Si treatments, and pH values in both the leaf area and plant tissues were decreased in the Si 1000 and K4(SiO4) treatments. These findings indicate that Si can influence the foliar chemistry of pepper plants. Regarding salinity and EC, statistical differences were found in the values of the extracts of leaves and stem plus petiole.
Downloads
References
Abdelaal, K. A. A., Mazrou, Y. S. A., & Hafez, Y. M. (2020). Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield. Plants, 9(6), 733. https://doi.org/10.3390/plants9060733
Amin, M., Ahmad, R., Ali, A., Hussain, I., Mahmood, R., Aslam, M., & Lee, D. J. (2018). Influence of Silicon Fertilization on Maize Performance Under Limited Water Supply. Silicon, 10(2), 177–183. https://doi.org/10.1007/s12633-015-9372-x
Bhat, J. A., Shivaraj, S. M., Singh, P., Navadagi, D. B., Tripathi, D. K., Dash, P. K., Solanke, A. U., Sonah, H., & Deshmukh, R. (2019). Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. Plants, 8(3), 71. https://doi.org/10.3390/plants8030071
Calero Hurtado, A., Aparecida Chiconato, D., de Mello Prado, R., da Silveira Sousa Junior, G., & Felisberto, G. (2019). Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiology and Biochemistry, 142, 224–233. https://doi.org/10.1016/j.plaphy.2019.07.010
De Mello Prado, R. (2023). Benefits of Silicon in the Nutrition of Plants. Springer Nature.
Debona, D., Rodrigues, F. A., & Datnoff, L. E. (2017). Silicon’s Role in Abiotic and Biotic Plant Stresses. Annual Review of Phytopathology, 55(1), 85–107. https://doi.org/10.1146/annurev-phyto-080516-035312
Espinosa, J., Moreno, J., & Bernal, G. (2018). The Soils of Ecuador (J. Espinosa, J. Moreno, & G. Bernal, Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-319-25319-0
Freitas, A. S., Pozza, E. A., Soares, M. G. O., Silva, H. R., Pérez, C. D. P., & Pozza, A. A. A. (2017). Severity of yellow Sigatoka in banana cultivated in silicon nutrient solution. Australasian Plant Pathology, 46(6), 515–520. https://doi.org/10.1007/s13313-017-0521-0
Greger, M., Landberg, T., & Vaculík, M. (2018). Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. Plants, 7(2), 41. https://doi.org/10.3390/plants7020041
Hassan, S. M., El-Bebany, A. F., Salem, M. Z. M., & Komeil, D. A. (2021). Productivity and Post-Harvest Fungal Resistance of Hot Pepper as Affected by Potassium Silicate, Clove Extract Foliar Spray and Nitrogen Application. Plants, 10(4), 662. https://doi.org/10.3390/plants10040662
Hebsur, N. S. (2019). Effect of silicon fertilization on growth and yield of soybean [Glycine max (L.) Merrill] in a vertisol. Journal of Pharmacognosy and Phytochemistry, 8(6), 1572–1575.
Higuita, F. E. R., & Rodríguez, J. A. C. (2015). Importancia agronómica del silicio y su impacto en la productividad de la caña de azucar. Suelos Ecuatoriales, 45(1), 10–15.
Kablan, L., Lagauche, A., Delvaux, B., & Legr`ve, A. (2012). Silicon Reduces Black Sigatoka Development in Banana. Plant Disease, 96(2), 273–278. https://doi.org/10.1094/PDIS-04-11-0274
Kamenidou, S., Cavins, T. J., & Marek, S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae, 119(3), 297–301. https://doi.org/10.1016/j.scienta.2008.08.012
Kaushik, P., & Saini, D. K. (2019). Silicon as a Vegetable Crops Modulator—A Review. Plants, 8(6), 148. https://doi.org/10.3390/plants8060148
Köppen, W., & Geiger, R. (1884). Clasificación climática de Köppen.
Li, H., Zhu, Y., Hu, Y., Han, W., & Gong, H. (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 37(4), 71. https://doi.org/10.1007/s11738-015-1818-7
Liang, Y. (2002). Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Science in China Series C, 45(3), 298. https://doi.org/10.1360/02yc9033
Liu, Soundararajan, & Manivannan. (2019). Mechanisms of Silicon-Mediated Amelioration of Salt Stress in Plants. Plants, 8(9), 307. https://doi.org/10.3390/plants8090307
Liu, X., Yin, L., Deng, X., Gong, D., Du, S., Wang, S., & Zhang, Z. (2020). Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. Journal of Hazardous Materials, 395, 122679. https://doi.org/10.1016/j.jhazmat.2020.122679
Luyckx, M., Hausman, J.-F., Lutts, S., & Guerriero, G. (2017). Silicon and Plants: Current Knowledge and Technological Perspectives. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00411
Mancinelli, R., Muleo, R., Marinari, S., & Radicetti, E. (2019). How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation. Agriculture, 9(7), 145. https://doi.org/10.3390/agriculture9070145
Matarín, A., & Morales, I. (2018). Manual práctico para el cultivo del pimiento en agricultura protegida (Mundi-Prensa).
Mollericona, M., Tarqui, M., & Blanco, M. (2022). Trabajos de investigación realizados en la Estación Experimental Patacamaya, Facultad de Agronomía-UMSA: una sistematización y estudio bibliométrico. Revista Apthapi, 8(3), 2443–2455. https://doi.org/10.53287/rzku6959qa75n
Pourrut, P., Gomez, G., Bermeo, A., & Segovia, A. (1995). Factores condicionantes de los regímenes climáticos e hidrológicos. In El agua en el Ecuador : clima, precipitaciones, escorrentia (pp. 7–12). Corporacion Editora Nacional ; Colegio de Geografos del Ecuador ; ORSTOM. https://www.documentation.ird.fr/hor/fdi:010014826
Rajput, V. D., Minkina, T., Feizi, M., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady, H., Verma, K. K., Singh, A., Hullebusch, E. D. van, Singh, R. K., Jatav, H. S., & Choudhary, R. (2021a). Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology, 10(8), 791. https://doi.org/10.3390/biology10080791
Rajput, V. D., Minkina, T., Feizi, M., Kumari, A., Khan, M., Mandzhieva, S., Sushkova, S., El-Ramady, H., Verma, K. K., Singh, A., Hullebusch, E. D. van, Singh, R. K., Jatav, H. S., & Choudhary, R. (2021b). Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology, 10(8), 791. https://doi.org/10.3390/biology10080791
Rodríguez, A., Peña-Fleitas, M. T., Gallardo, M., de Souza, R., Padilla, F. M., & Thompson, R. B. (2020). Sweet pepper and nitrogen supply in greenhouse production: Critical nitrogen curve, agronomic responses and risk of nitrogen loss. European Journal of Agronomy, 117, 126046. https://doi.org/10.1016/j.eja.2020.126046
Soundararajan, P., Sivanesan, I., Jana, S., & Jeong, B. R. (2014). Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Horticulture, Environment, and Biotechnology, 55(4), 271–279. https://doi.org/10.1007/s13580-014-0023-8
Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A Review of Silicon in Soils and Plants and Its Role in US Agriculture. Soil Science, 181(9/10), 393–411. https://doi.org/10.1097/SS.0000000000000179
USDA (United States Department of Agriculture). (2014). Handbook. Keys to Soil Taxonomy, Soil Survey Staff, fourth edition. http://www.ascr.usda.gov/complaint_filing_file.html.
Villaseñor, D., De Mello Prado, R., Luna, E., Jaramillo, E., & Agurto, L. (2022). Critical nitrogen and potassium levels and sufficiency ranges for banana cultivation in Ecuador. Fruits, 77(1). https://doi.org/10.17660/th2022/002

Published
Versions
- 2024-10-24 (3)
- 2024-08-01 (2)
- 2024-07-31 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Ab Intus

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.