La vida vegetal en hábitats extremos: plantas de afloramientos rocosos

Resumen

Los afloramientos rocosos, el hábitat natural de las plantas rupícolas, son superficies geomorfológicas reconocidas en diferentes ecorregiones del mundo como importantes centros de diversidad con comunidades únicas, niveles importantes de endemismos y presencia de especies raras. Proveen beneficios ecosistémicos de extrema relevancia para el mantenimiento de la calidad ambiental tales como la recarga y almacenamiento del agua, la regulación climática, secuestro del carbono, soporte de la fauna silvestre, entre otros. Los afloramientos influyen en la composición y diversidad de los patrones de vegetación regional. Son ambientes extremos para la vida de las plantas por los diferentes tipos de estrés que allí ocurren, hídrico, térmico, lumínico y de nutrientes, con sus múltiples interacciones. El espacio para el anclaje y crecimiento de las raíces y la muy baja disponibilidad hídrica de los micrositios, son los factores limitantes preponderantes. La especificidad de asociación con las características geoquímicas del sustrato rocoso es frecuente en varias de estas especies rupícolas. Muchos afloramientos son foco de aprovechamiento minero que suele degradarlos. Para poder conservar afloramientos rocosos y su flora asociada es imprescindible conocer esta geodiversidad. Con este fin se presenta una revisión de los principales antecedentes sobre la vida vegetal en las rocas y se la ilustra con fotografías de 94 especies de plantas con flores que crecen en afloramientos carbonáticos de las Sierras de Córdoba (Argentina).


ARK-CAICYT: http://id.caicyt.gov.ar/ark:/s26182734/tyoct8xw4

Citas

Alahuhta, J., Toivanen, M., Hjort, J. (2020). Geodiversity-biodiversity relationship needs more empirical evidence. [En línea]. Nature Ecology, Evolution. 4 (2-3). Disponible en: https://doi.org/10.1038/s41559-019-1051-7.

Albano, C.M. (2015). Identification of geophysically diverse locations that may facilitate species’ persistence and adaptation to climate change in the southwestern United States. Landscape Ecology. 30: 1023-1037.

Alves, R. & Kolbe, J. (1994). Plant-species endemism in savanna vegetation on table mountains (campo-rupestre) in Brazil. Vegetatio 113 (2): 125-139.

Anacker, B.L. (2014). The nature of serpentine endemism. American Journal Botany. 101: 219–224.

Anderson R.C., Fralish, J.S., Baskin, J.M. (1999). Introduction. En Anderson, R.C., Fralish, J. S., Baskin, J.M., editores. Savannas, barrens, and rock outcrop plant communities of North America, pp.1-4. Cambridge University Press.

Andrade, M., Bianchi, A., Afazzani de Juárez, M., D’Aloia, M., Díaz, G., Torres, B. Vottero, O. (1976). Programa de prospección y exploración de yacimientos de manganeso en áreas del Departamento Sobremonte, provincia de Córdoba. Prospección geológica al detalle. Dirección Provincial de Minería. (inéd.).

Antonelli, A., Kissling, W.D., Flantua, S.G.A., Bermúdez, M.A., Mulch, A., Muellner-Riehl, A.N., Kreft, H., Linder, H.P., Badgley, C., Fjeldså, J., Fritz, S.A., Rahbek, C., Herman, F., Hooghiemstra, H., Hoorn, C. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience 11, 718-725.

Arnosio, M., Popridkin, C., Báez W., Bustos, E. (2014). El volcanismo terciario: Complejo Volcánico Pocho. En: Martino, R.D. y Guereschi, A.B., editores. Geología y Recursos Naturales de la Provincia de Córdoba, Relatorio del 19º Congreso Geológico Argentino. I: 623-648.

Astini R.A. y Del Papa, C.E. (2014a). Cubierta sedimentaria paleozoica superior. En: Martino, R.D. y Guereschi, A.B., editores. Geología y Recursos Naturales de la Provincia de Córdoba, Relatorio del 19º Congreso Geológico Argentino, I: 393-421.

Astini, R.A. y Oviedo, N. (2014b). La posición estratigráfica de la formación Los Llanos (calcretes-silcretes y sustratos pedogenizados) y significado geológico en el ámbito de las Sierras Pampeanas. Actas XIX Congreso Geológico Argentino. T1-6.

Badgley, C., Smiley, T.M., Terry, R., Davis, E. B., DeSantis, L., Fox, D.L., Hopkins, S., Jezkova, T., Matocq, M., Matzke, N., McGuire, J., Mulch, A., Riddle, B., Roth, V., Samuels, J., Strömberg, C., Yanites, B. (2017). Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives. Trends in
Ecology, Evolution. 32 (3): 211-226.

Bailey, J.J., Boyd, D.S., Field, R. (2018). Models of upland species distributions are improved by accounting for geodiversity [en línea]. Landscape Ecology. Disponible en: https://doi.org/10.1007/s10980-018-0723-z.

Bailey, J.J., Boyd, D.S., Hjort, H., Lavers, C.P. y Field, R. (2017). Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant? Global Ecology and Biogeography. 26:763-776.

Barthlott, W. & Porembski, S. (2000). Vascular plants on inselbergs: systematic overview. En Porembski, S. & Barthlott W., editores. Inselbergs –biotic diversity of isolated rock outcrops in tropical and temperate regions, pp. 103-116. Ecological Studies. Springer-Verlag, Berlín.

Baskin, J.M. & Baskin, C.C. (1988). Endemism in rock outcrop plant communities of unglaciated eastern United States: an evaluation of the roles of the edaphic, genetic and light factors. Journal of Biogeography. 15: 829–840.

Beier, P., Hunter, M.L., Anderson, M. (2015b). Special section: Conserving nature’s stage. Conservation Biology. 29: 613–617.

Beier, P., Sutcliffe, P., Hjort, J., Faith, D.P., Pressey, R.L., Albuquerque, F.S. (2015a). A review of selection-based tests of abiotic surrogates for species representation. Conservation Biology. 29, 668–679.

Bétard, F. (2013). Patch-Scale relationships between geodiversity and biodiversity in hard rock quarries: case study from a disused quartzite quarry in NW France. Geigerite 5: 59-71.

Bianchi, A. A. (1947). Estudio de los bancos travertínicos de la provincia de Córdoba. Tesis de Doctorado. Universidad Nacional de Córdoba (inédita).

Boira, H., Costa, M., Batlle, J., Soriano, P., Loidi, J., Samo, A. (2002). Numerical revision of syntaxonomy and ecological characteristics of vegetation on gypsum substrates in Spain (C. and SE.). Ecología Mediterránea. 28:39–53

Bonalumi, A. y Baldo, E. (2003). Ordovician Magmatism in the Sierras Pampeanas of Córdoba. En: Aspects of the Ordovician System in Argentina, Aceñolaza, F. G., editores. Serie Correlación Geológica. 16:243-256.

Bonalumi, A., Escayola, M., Kraemer, P., Baldo, E., Martino, R. (1999a). Precámbrico, Paleozoico Inferior de la Sierra de Córdoba. En: R. Caminos, editores. Geología Argentina. Instituto de Geología y Recursos Minerales. SEGEMAR. Anales. 29-6, 136-140. Buenos Aires.

Bonalumi, A.A., Martino, R.D., Sfragulla, J.A., Baldo, E.G., Zarco, J., Carignano, C., Tauber, A., Kraemer, P., Escayola, M., Cabanillas, A., Juri, E., Torres, B. (1999b). Hoja Geológica 3166-IV. Villa Dolores. (Memoria y Mapa Geológico). Boletín 250. SEGEMAR. Buenos Aires.

Braun-Blanquet, J. (1932). Plant sociology. The study of plant communities. McGraw-Hill: New York, 439 p.

Brilha, J., Gray, M., Pereira, D.I., Pereira, P. (2018). Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environmental Science Policy. 86:19-28.

Brković, D.L., Tomović, G.M., Niketić, M.S. et al. (2015). Diversity analysis of serpentine and non-serpentine flora - or, is serpentinite inhabited by a smaller number of species compared to different rock types? [en línea] Biologia. 70, 61–74.

Brooks, R. R. & Radford, C. C. (1978). Nickel accumulation by European species of the genus Alyssum. Proceedings of the Royal Society of London. Series

B. Containing Papers of a Biological Character. 200: 217–224.

Brooks, R.R. (1987). Serpentine and its Vegetation: A Multidisciplinary Approach. Dioscorides Press, Portland, OR.

Buira, A., Cabezas, F., Aedo, C. (2020). Disentangling ecological traits related to plant endemism, rarity and conservation status in the Iberian Peninsula.
Biodiversity and Conservation. 29: 1937-1958.

Burel F. & Baudry, J. (2002) Ecología del Paisaje. Mundiprensa. Madrid, España. 353 p.

Burgess, J.L., Lev, S., Swan, C.M., Szlavecz, K. (2009). Geologic and Edaphic Controls on a Serpentine Forest Community. Northeastern Naturalist. 16, 366–384.

Burke, A. (2002a). Island-matrix relationships in Nama Karoo inselberg landscapes Part I: Do inselbergs provide a refuge for matrix species? Plant Ecology. 160: 79-90.

Burke, A. (2002b). Island-matrix relationships in Nama Karoo inselberg landscapes Part II: Are some inselbergs better sources than others? Plant Ecology. 158: 41-48.

Burke, A., Esler, K. J., Pienaar, E., Barnard, P. (2003). Species richness and floristic relationships between mesas and their surroundings in southern African Nama Karoo. Diversity and Distributions. 9: 43–53.

Cáceres, D.M., Silvetti. F., Díaz, S. (2016). The rocky path from policy-relevant science to policy implementation a case study from the South American Chaco. Current Opinion in Environmental Sustainability. 19: 57-66.

Caminos, R. (1979). Sierras Pampeanas Noroccidentales. Segundo Simposio de Geología Regional Argentina, Academia Nacional de Ciencias de Córdoba, Argentina, 1:225-291.

Candiani, J.C., Gaido, F., Miro, R., Carignano, C., López, H. (2008). Hoja geológica 3163-I Jesús María, provincia de Córdoba. Instituto de Geología y Recursos Minerales, SEGEMAR. Boletín 314. Buenos Aires.

Cantero, J.J., Mulko, J., Núñez, C., Zeballos, S., Sfragulla, J., Amuchastegui, A., Barboza, G., Chiarini, F., Ariza Espinar, L., Bonalumi, A., Brandolin, P., Cabido, M. (2017). Heterogeneidad de la vegetación en ambientes basálticos del centro de Argentina. Boletín Sociedad Argentina Botánica. 52 (1): 153-183.

Cantero, J.J., Núñez, C., Mulko, J.M, Brandolin, P., Amuchastegui, A., Sfragulla, J., Bonalumi, A., Martínez, A., Zeballos, S., Cabido, M., Barboza, G., Chiarini, F., Ariza Espinar, L. (2016). Vegetación y flora de afloramientos basálticos del centro de Argentina. Arnaldoa. 23 (1): 185-218.

Cantero, J.J., Núñez, C.O., Zeballos, S.R., Sfragulla, J., Amuchástegui, A., Brandolin, P., Bonalumi, A., Cabido, M. (2021). Vegetation and flora of marble outcrops and their nearby matrices in mountains of central Argentina. Rock chemistry also matters. Flora: Morphology, Distribution [en línea], Functional Ecology of Plants. 274, 151757. Disponible en: https://doi.org/10.1016/j.flora.2020.151757

Cantero, J.J., Sfragulla, J.A., Núñez, C., Bonalumi, A., Mulko, J., Amuchastegui, A., Chiarini, F., Barboza, G.E., Ariza Espinar, L. (2011). Flora de los afloramientos de mármoles y serpentinitas de las Sierras de Córdoba (Argentina). Kurtziana 36 (2): 11-45.

Cantero, J.J., Sfragulla, J.A., Núñez, C., Mulko, J., Bonalumi, A., Amuchastegui, A., Barboza, G.E., Chiarini, F., Ariza Espinar, L. (2014). Vegetación de afloramientos carbonáticos de montañas del centro de Argentina. Boletín de la Sociedad Argentina de Botánica. 49 (4):559-580.

Carella, D.S.G., Speziale, K., Lambertucci, S. (2019). Estado del conocimiento en ecología y conservación de los roquedales de la Argentina: Una revisión. Ecología Austral. 29 (3), 315-328.

Carignano, C., Dargam, M. y Bertolino, S. (1996). Caracterización y probable origen de los calcretes del sector sudoriental de las Salinas Grandes de Córdoba (Argentina). Actas XIII Congreso Geológico Argentino: 43-44. Buenos Aires.

Carignano, C., Kröhling, D., Degiovanni, S., Cioccale, M. (2014). Geomorfología. En: Martino, R. y Guereschi, A., editores. Relatorio XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba. Córdoba: Asociación Geológica Argentina, pp. 747-822.

Chytrý M. (Editor) (2009). Vegetace České republiky 2. Ruderální, plevelová, skalní a suťová vegetace. Vegetation of the Czech Republic 2. Ruderal, weed, rock and scree vegetation. Academia, Praha, 520 p.

Clarke, P.J. (2002). Habitat islands in fire-prone vegetation: do landscape features influence community composition? Journal of Biogeography. 29, 677–684.

Covelo, F., Sales, F., Silva, M., Garcia, C.A. (2017). Vegetation on limestone versus phyllite soils: A case study in the west Iberian Peninsula. Flora Mediterránea. 27, 159–173.

Cowles, H.C. (1901). The influence of underlying rocks on the character of the vegetation. American Bureau of Geography Bulletin. 2:163–176, 376–388.
Craw, D., Upton, P., Burridge, Ch., Wallis, G.P., Waters, J. M. (2016). Rapid biological speciation driven by tectonic evolution in New Zealand. Nature
Geoscience. 9: 140-144.

D’Aloia, M. (1959). Las calizas y calcáreos de Córdoba. Dirección Provincial de Minería. Córdoba.

D’Eramo, F.J., Pinotti, L.P., Bonalumi, A., Sfragulla, J., Demartis, M., Coniglio, J., Baldo, E.G. (2014). El magmatismo ordovícico en las Sierras Pampeanas de Córdoba. En: Martino, R.D. y Guereschi, A.B., editores. Geología y Recursos Naturales de la Provincia de Córdoba, Relatorio del XIX Congreso Geológico Argentino. I: 233-254.

Dana E. & Mota, J.F. (2006). Vegetation and soil recovery on gypsum outcrops in semi-arid Spain. Journal Arid Environment. 65:444–459.
Darwin, C. (1839). Journal of Researches into the Geology and Natural History of the Various Countries Visited by H.M.S. Beagle. [Chapter XX] [ Brussels: Editions Culture et Civilisation, 1969] EPUB file.

Darwin, Ch. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London, UK. 502p.

Desmet, P. & Cowling, R. (1999). Biodiversity, habitat and range-size aspects of a flora from a winter-rainfall desert in north-western Namaqualand, South Africa. Plant Ecology. 142, 23–33.

Díaz, S., Pascual, U., Stenseke, M. Martín-López, B., Watson, R.T., Molnár, Z., Hill, R., Chan, K., Baste, I., Brauman, K., Polasky, S., Church, A. Lonsdale, M., Larigauderie, A., Leadley, P., van Oudenhoven, A., van der Plaat, F., Schröter, M., Lavorel, S., Thomas, Y., Bukvareva, E., Davies, K., Demissew, S., Erpul, G.,
Failler, P., Guerra, C., Hewitt, Ch., Keune, H., Lindley, S., Shirayama, Y. (2018). Assessing nature’s contributions to people. Science. 359 (6373):270-272.

Ditzler, C., K. Scheffe, H.C. Monger, editores. (2017). USDA Handbook 18. Government Printing Office, Washington, D.C. Soil Science Division Staff. Soil survey manual.

Djordjević, V. & Tsiftsis, S. (2019). Patterns of orchid species richness and composition in relation to geological substrates. Wulfenia 26, 1–21.

Dobrowski, S.Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology. 17:1022-1035.

Dostalek T., Muenzbergova, Z., Plackova, I. (2014). High genetic diversity in isolated populations of Thesium ebracteatum at the edge of its distribution range. Conservation Genetics. 15, 75-86.

Dufour, A., Gadallah, F., Wagner, H. H., Guisan, A., Buttler. (2006). Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration. Ecography 29: 573-584.

Duvigneaud, P. & Denaeyer-de smet, S. (1966). Accumulation du soufre dans quelques espèces Gypsophiles d’Espagne. Bulletin de la Société Royale de Botanique de Belgique / Bulletin van de Koninklijke Belgische Botanische Vereniging. 99 (2): 263-269.

Eronen, J. T., Janis, C. M., Chamberlain, C. P., Mulch, A. (2015). Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe [en línea]. Proceedings of the Royal Society B: Biological Sciences. 282: 20150136. Disponible en: http://dx.doi.org/10.1098/rspb.2015.0136.

Escudero, A., Palacio, S., Maestre, F.T., Luzuriaga, A. (2015). Plant life on gypsum: a review of its multiple facets. Biological Review. 90:1-18.
Esgario, C.P., Fontana, A.P., Silva, A.G. (2009). A flora vascular sobre rocha no Alto Misterioso, uma área prioritária para a conservação da Mata Atlântica no Espírito Santo, Sudeste do Brasil. Natureza. 7 (2): 80-91.

Favre, A., Päckert, M., Pauls, S., Jähnig, S., Uhl, D., Michalak, I., Muellner-Riehl, A. (2015). The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biological reviews of the Cambridge Philosophical Society. 90: 236-253.

Fjeldså, J., Bowie, R.C.K., Rahbek, C. (2012). The Role of Mountain Ranges in the Diversification of Birds. Annual Review of Ecology Evolution and Systematics. 43(1):249-265.

Font Quer, P. (2009). Diccionario de Botánica. Ed. Península, Madrid, España. 1244p.

Galey, M.L., van der Ent, A., Iqbal, M.C.M., Rajakaruna, N. (2017). Ultramafic geoecology of South and Southeast Asia. Botanical Studies. 58: 18. [En línea] Disponible en: https://doi.org/10.1186/s40529-017-0167-9.

Giulietti, A.M., Pirani, J., Harley, R.M. (1997). Espinhaço range region, eastern Brazil. En Davis, S.D., Heywood, V.H., Herrera-MacBryde, O., Villa-Lobos, J. y
Hamilton, A. C., editores. Centres of Plant Diversity: A Guide and Strategy for their Conservation, pp. 397-404. IUCN Publication Unity, v.3, Cambridge.

Goldin, A., Nimlos, T.J. (1977). Vegetation patterns on limestone and acid parent materials in the Garnet Mountains of western Montana. Northwest Science. 51, 149–160.

Gordillo, C. E. y Lencinas, A. (1967). Geología y petrología del extremo norte de la Sierra de Los Cóndores, Córdoba. Boletín Academia Nacional de Ciencias. 46(1): 73–108. Córdoba.

Gordillo, C. y Lencinas, A. (1979). Sierras Pampeanas de Córdoba y San Luis. En Turner, J.C., editor. Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias. Vol. I (2): 577-650, Córdoba.

Graham, R., Ann, M., Kenneth, R. (2010). Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems. GSA Today. 20, 4-9.

Gray, M. (2004). Geodiversity. Valuing and conserving abiotic nature. John Wiley, Sons, Sussex, 434p

Gray, M. (2013). Geodiversity. Valuing and Conserving Abiotic Nature, (Wiley, London), 2da. edición. 512p.

Grime J.P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist. Vol. 111 (982) 1169-1194.

Guereschi, A.B. y Martino, R.D. (2014). Las migmatitas de las Sierras de Córdoba. En: Martino, R. D. y Guereschi, A. B. (editores). Geología y Recursos Naturales de la Provincia de Córdoba, Relatorio del 19º Congreso Geológico Argentino, I: 67-94.

Hahm, W.J., Riebe, C.S., Lukens, C.E., Araki, S. (2014). Bedrock composition regulates mountain ecosystems and landscape evolution. Proceedings of the National Academy of Sciences USA. 111: 3338-3343.

Harrison, S. & Noss, R. (2017). Endemism hotspots are linked to stable climatic refugia. Annals of Botany. 119:207-214.

Harrison, S. & Rajakaruna, N., editores. (2011). Serpentine: the evolution and ecology of a model system. Davis, California: University of California Press. 464p.

Harrison, S. & Inouye, B.D. (2002). High β diversity in the flora of Californian serpentine’ islands. Biodiversity Conservation. 11, 1869–1876.

Harrison, S., Safford, H.D., Grace, J.B., Viers, J.H., Davies, K.F. (2006). Regional and local species richness in an insular environment: serpentine plants in California. Ecological Monograph. 76, 41–56.

Harrison, S., Viers, J.H., Thorne, J.H., Grace, J.B. (2008). Favorable environments and the persistence of naturally rare species. Conservation Letters. 1, 65–74.

Hjort, J. & Luoto, M. (2010). Geodiversity of high-latitude landscapes in northern Finland. Geomorphology. 115:109-116.

Hjort, J., Gordon, J.E., Gray, M., Hunter, M.L. (2015). Why geodiversity matters in valuing nature’s stage. Conservation Biology. 29: 630-639.

Hjort, J., Heikkinen, R.K., M. Luoto. (2012). Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodiversity and Conservation. 21: 3487-3506.

Hoorn, C., Wesselingh, F.P., Ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science. 330 (6006): 927-931.

Hünicken, M.A. y Pensa, M.V. (1980). Estratigrafía y tectónica de las sedimen. neopaleozoicas (Fm. Chancaní) y de las filitas (Fm. La Mermela) del borde occidental de las Sierras de Pocho y Guasapampa. Academia Nacional de Ciencias, Actas Tomo 53 (entregas 1a.-4ta.): 255-286. Córdoba. J.C., editores. Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias. Vol. I (2): 577-650, Córdoba.

Hunter, J.T. (2003). Persistence in inselbergs: the role of obligate seeders and resprouters. Journal of Biogeography. 30, 497–510.

Jačková, K. & Romportl, D. (2008). The relationship between geodiversity and habitat richness in Šumava National Park and Křivoklátsko Pla (Czech Republic): a quantitative analysis approach. Journal of Landscape Ecology. 1, 23–38.

Jacobi, C.M., Carmo, F., Vincent, R., Stehmann, J.R. (2007). Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity and Conservation. 16: 2185-2200.

Jain, S.K. & A.D. Bradshaw. (1966). Evolutionary divergence among adjacent plant populations I. the evidence and its theoretical analysis. Heredity. 21, 407–441.

Jordan, T. E. & Allmendinger, R.O. (1986). The Sierras Pampeanas of Argentina, a modern analogue to the Rocky Mountain foreland deformation. American Journal of Science. 286:737-768.

Karger, D. N., Wüest, R.O., König. C., Sarmento Cabral, J., Weigelt, P., Zimmermann, N.E., Linder, H.P. (2020). Disentangling the drivers of local species richness using probabilistic species pools. Journal of Biogeography. 47: 879-889.

Kataeva, M.N., Alexeeva-Popova, N.V., Drozdova, I.V., Beljaeva, A. I. (2004). Chemical composition of soils and plant species in the Polar Urals as influenced by rock type. Geoderma. 122: 257- 268.

Kauhanen, H.O. (2013). Mountains of Kilpisjärvi host an abundance of threatened plants in Finnish Lapland. Botanica Pacifica. Journal of Plant Science and Conservation, 2, 43–52.

Kay, S. M. y Gordillo, C. E. (1990). Pocho volcanic rocks in the Sierra de Cordoba - Melting of depleted continental lithosphere above a shallow subduction zone. X Congreso Geológico Argentino I: 60-63. San Juan.

Kay, S. M. y Gordillo, C. E. (1994). Pocho volcanic rocks and the melting of depleted continental lithosphere above shallowly dipping subduction zone in the central Andes. Contributions to Mineralogy and Petrology. 117: 25-44.

Kerner von Marilaün, A. (1896). The natural history of plants: their forms, growth, reproduction and distribution. F. W. Oliver, translation and revision. Blackie, London, UK.

Knudson, C., Kay, K., S. Fisher. (2018). Appraising geodiversity and cultural diversity approaches to building resilience through conservation. Nature Climate Change. 8: 678-685.

Konečná, V., Yant, L., F. Kolár. (2020). The Evolutionary Genomics of Serpentine Adaptation [en línea]. Frontiers in Plant Science. 16, 11:574616. Disponible en: http//doi: 10.3389/fpls.2020.574616.

Kruckeberg, A.R. (2004). Geology and plant life: the effects of landforms and rock types on plants. University of Washington, Seattle. USA.

Kruckeberg, A.R. (1969a). Soil diversity and the distribution of plants, with examples from western North America. Madrono. 20:129-154.

Kruckeberg, A.R. (1969b.) Plant life on serpentinite and other ferromagnesian rocks in northwestern North America. Syesis. 2:15-114.

Kruckeberg, A.R. (1984). California Serpentines: Flora, Vegetation, Geology, Soils, and Management Problems. University of California Publications in
Botany, Berkeley, Los Angeles, London. 196p.

Kruckeberg, A.R. (1986). An essay: The stimulus of unusual geologies for plant speciation. Systematic Botany. 11: 455-463.

Kruckeberg, A.R. (1991). An essay: Geoedaphics and island biogeography for vascular plants. Aliso. 13:225-238.

Kruckeberg, A.R. (1993). Serpentine biota of western North America. En The Vegetation: of ultramafic (Serpentine) Soils. Baker, A. J. M., Proctor J. y Reeves R. D., editores. Andover, UK: Intercept. 19-23.

Kruckeberg, A.R. (2002). Geology and Plant Life. University of Washington Press. 304 p.

Kruckeberg, A.R. (2006). Introduction to California Soils and Plants: Serpentine, Vernal Pools, and Other Geobotanical Wonders (California Natural History Guides). University of California Publications. In the University of California Press, Berkeley, Los Angeles, London. 296 p.

Kruckeberg, A.R. (1951). Intraspecific variability in response of certain native plant species to serpentine soil. American Journal Botany. 38:408-4l9.

Kruckeberg, A.R. & Rabinowitz, D. (1985). Biological aspects of rarity in higher plants. Annual Review of Ecology Systematic.16: 447-479.

Küpper, H., Lombi, E., Zhao, F., Wieshammer, G., Mcgrath, S.P. (2001). Cellular compartimentation of nickel in the hypperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal Experimental Botany. 52: 2291–2300.

Lagorio, S.L., Vizán, H., Geuna, S.E. (2014). El volcanismo alcalino cretácico. En Martino, R.D. y Guereschi, A.B., editores. Relatorio del XIX Congreso Geológico Argentino. Geología y recursos naturales de la Provincia de Córdoba, I: 473-512.

Levin, S.A. (1992). The problem of pattern and scale in ecology. Ecology. 73 (6): 1943-1967.

Lira, R., Millone, H.A., Kirschbaum, A.M., Moreno, R.S. (1996). Calc-alkaline arc granitoid activity in the Sierra Norte-Ambargasta Ranges, central Argentina. Journal of South American Earth Sciences.10: 157-177.

Lira, R. y Sfragulla, J. (2014a). El magmatismo devónico-carbonífero: El Batolito de Achala y los plutones menores al norte del cerro Champaquí. En
Martino, R. D. y Guereschi, A. B., editores. Geología y Recursos Naturales de la Provincia de Córdoba, Relatorio del XIX Congreso Geológico Argentino, I: 293-348.

Lira, R., Poklepovic, M.F., O’Leary, M.S. (2014b). El magmatismo cámbrico en el batolito de Sierra Norte-Ambargasta. En: R. Martino y A. Guereschi, editores. Geología y Recursos Naturales de la Provincia de Córdoba. Relatorio del 19º Congreso Geológico Argentino, I: 183-216.

Liu, C.Q. (2009). Biogeochemical processes and cycling of nutrients in the earth’s surface: Cycling of nutrients in soil-plant systems of karstic environments, Southwest China. Beijing, China: Science Press. 618p.

Loidi J. y Costa M. (1997). Sintaxonomía de los matorrales gipsícolas españoles. Fitosociologia. 32:221–227

Loidi J. & Fernández-González, F. (1994). The gypsophilous scrub communities of the Ebro Valley. Phytocoenologia. 24:383–399

López, M.G. y Sola, P. (1981). Manifestaciones volcánicas alcalinas de los alrededores de Las Chacras y de la región de Villa Mercedes-Chaján, provincias de San Luis y Córdoba. 8º Congreso Geológico Argentino, Actas 4: 967–978.

Major, J. (1988). Endemism: a botanical perspective. En Myers, A.A. y Giller, P.S., editores. Analytical biogeography. An integrated approach to the study of animal and plant distributions. London: Chapman y Hall, pp. 117–146.

Martino, R.D. (2003). Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: una reseña general. Revista Asociación Geológica Argentina. 58 (4). 549-571.

Masehela, T.S., Potgieter, M.J., Veldtman, R. (2017). Comparisons in floristic Composition and Plant Species Diversity amongst Granite Outcrops of the Mamabolo Mountain Bushveld, South Africa. Forest Research. 1, 32–41.

Médail, F. & Verlaque, R. (1997). Ecological characteristics and rarity of endemic plants from southeast France and Corsica: implications for biodiversity conservation. Biological Conservation. 80:269-271.

Merlo, M.E., Gil de Carrasco, C., Sola Gómez, A.J, Jiménez Sánchez, M.L, Rodríguez Tamayo, M.L., Mota, J.F. (2009). ¿Can gypsophytes distinguish different types of gypsum habitats? Acta Botanica Gallica. 156(1):63–78

Methol, E.J. (1958). Descripción Geológica de la Hoja 18 i, Dean Funes. Tulumba (Córdoba). Escala 1:200.000. Carta Geológico-Económica de la República Argentina. Boletín 88, 86 p. Buenos Aires, Dirección Nacional de Geología y Minería.

Michelangeli, F.A. (2000). Species composition and species-area relationships in vegetation isolates on summit of a sandstone mountain in southern Venezuela. Journal of Tropical Ecology. 16: 69-82.

Morford, S. L., Houlton, B. Z., Dahlgren, R. A. (2011). Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature. 477, 78-81.

Moser, D., Dullinger, S., Englisch, T., Niklfeld, H., Plutzar, CH., Sauberer, N., Zechmeister, H.G., Grabherr, G. (2005). Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography. 32: 1117-1127.

Mota, J., Valle. F., Cabello, J. (1993a). Dolomitic vegetation of South Spain. Vegetatio. 109: 29-45.

Mota, J.F, Alvarado, J.J., Gómez, F., Valle, F, Cabello, J. (1993b). Vegetación gipsícola y conservación de la naturaleza. Colloques Phytosociologiques. 21:677–688.

Mota, J.F., Garrido-Becerra, J.A., Merlo, M.E., Medina-Cazorla, J.M., Sánchez-Gómez, P. (2017). The Edaphism: Gypsum, Dolomite and Serpentine Flora and Vegetation. En Loidi, J., editor. The Vegetation of the Iberian Peninsula. Springer, Cham. 277-354.

Murray, A. Aberdeen. A.M. (1833). Observations on the supposed connection of rocks with plants. Magazine of Natural History. 6 (34): 335-344.

Murray, A. & Aberdeen. (1833). Observations on the supposed connection of rocks with plants. Loudon´s Magazine of Natural History VI. P. 335. H. C. Watson. Observations on the affinities between plants and subyacent soil, loco citato 424.

Murray, G., Gordon J. E., Brown J. E. (2013). Geodiversity and the ecosystem approach: the contribution of geoscience in delivering integrated environmental management. Proceedings of the Geologists’ Association. Volume 124, (4): 659-673

Mutke, J. & Barthlott,W. (2005). Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter. 55:521-37.

Najwer, A., Borysiak, J., Gudowicz, J., Mazurek, M., Zwoliński, Z. (2016). Geodiversity and biodiversity of the postglacial landscape (Dębnica River catchment, Poland). Quaestiones Geographicae. 35, 5–28.

Naqinezhad, A. & A. Esmailpoor. (2017). Flora and vegetation of rocky outcrops/cliffs near the Hyrcanian forest timberline in the Mazandaran mountains, northern Iran. Nordic Journal of Botany. 35(4): 449-466.

Nichols, W.F., Killingbeck, K.T., August. P.V. (1998). The influence of Geomorphological Heterogeneity on Biodiversity: II, A landscape perspective. Conservation Biology. 12: 371-379.

Nie, Y., Ding, Y., Zhang, H., Chen, H. (2019). Comparison of woody species composition between rocky outcrops and nearby matrix vegetation on degraded karst hillslopes of Southwest China. Journal Forest Research. 30: 911–920.

Nowak, A., Nowak, S., Nobis, M., A. Nobis. (2014). Vegetation of rock clefts and ledges in the Pamir Alai Mts, Tajikistan (Middle Asia). Central Europeal Journal of Biological. 9 (4): 444-460.

O’Dell, R. E. & Rajakaruna, N. (2011). Intraspecific variation, adaptation, and evolution. En Serpentine: Evolution and ecology of a model system. Harrison, S. y Rajakaruna, N., editors. Berkeley: Univ. of California Press. 97-137.

Olsacher, J. (1960). Descripción geológica de la Hoja 20h - Los Gigantes, Provincia de Córdoba. Dirección Nacional de Geología y Minería, Anales XII. Buenos Aires.

Öttli, M. (1905). Beitrage zur Okologie der Felsflora. Dissert., Zurich. Schroter, Botanische Exkursionen, Heft iii. Zurich.

Parmentier, I. (2003). Study of the vegetation composition in three inselbergs from Continental Equatorial Guinea: Effects of site, soil factor and positive relative to forest fringe. Belgian Journal Botany. 136: 63–72.

Parmentier, I., Stévart, T., Hardy, O. (2005). The inselberg flora of Atlantic Central Africa. I. Determinants of species Assemblages. Journal of Biogeography. 32: 685–696.

Pärtel, M. (2002). Local plant diversity patterns and evolutionary history at the regional scale. Ecology. 83: 2361-2366.

Pignatti, E. & Pignatti, S. (2014). Plant Life of the Dolomites. Vegetation Structure and Ecology. Springer. [Publication of the Museum of Nature South Tyrol 8]. XXXVII-769 p, Springer, Heidelberg.

Pinotti, L., Coniglio, J., D’eramo, F., Demartis, M., Otamendi, J., Fagiano, M., Zambroni, N. (2014). El magmatismo devónico: Geología del batolito de Cerro Áspero. En Martino, R. D. y Guereschi, A. B., editores. Geología y Recursos Naturales de la Provincia de Córdoba, Relatorio del 19º Congreso Geológico Argentino, I: 255-276.

Pinotti, L.P., Coniglio, J.E., Esparza, A.M., D’Eramo, F.J., Llambías, E.J. (2002). Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Áspero batholith, Sierras Pampeanas de Córdoba, Argentina. Journal of South America Earth Sciences. 15(2): 251–265.

Pope, N., Harris, T.B., Rajakaruna, N. (2010). Vascular Plants of Adjacent Serpentine and Granite Outcrops on the Deer Isles, Maine, U.S.A. Rhodora. 112(950):105-141.

Porembski, S. & Barthlott, W. (2000). Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecology. 151: 19-28.

Porembski, S., Martinelli, G., Ohlemüller, R., Barthlott, W. (1998). Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Diversity and Distributions. 4: 107–119.

Porembski, S., Szarzynski, J., Mund, J.P., Barthlott, W. (1996). Biodiversity and vegetation of small-sized inselbergs in a West African rain forest (Taï, Ivory Coast). Journal of Biogeography. 23: 47–55.

Porembski, S., Barthlott, W., Dörrstock, S., Biedinger, N. (1994). Vegetation of rock outcrops in Guinea: granite inselbergs, sandstone table mountains and ferricretes – remarks on species numbers and endemism. Flora. 189: 315-326.

Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R., Holt, B.G., Nogues-Bravo, D., Rasmussen, Ch., Richardson, K., Rosing, M.T., Whittaker, R.J., J. Fjeldså. (2020). Building mountain biodiversity: Geological and evolutionary processes [en línea]. Science. 365 (6458). Disponible en https//: 1114-1119. DOI: 10.1126/science. aax0151

Rajakaruna, N., Boyd, R.S., Harris, T.B. (2014). Synthesis and future directions: What have harsh environments taught us about ecology, evolution, conservation and restoration? En: Rajakaruna, N., Boyd, R.S. y Harris, T.B., editors. Plant ecology and evolution in harsh environments. Environmental
Research Advances. Hauppauge, NY: Nova Science, pp. 393–409.

Rajakaruna, N., Boyd, R.S., Harris, T.B., editores. (2011). Plant ecology and evolution in harsh environments. Nova Publishers, Hauppauge, NY, USA. 440 p.

Rangel, T., Edwards, N. R., Holden, P.B., Diniz-Filho, J. A., Gosling, W.D., Coelho, M. T.P., Cassemiro, F.A S., Rahbek, C., Colwell, R. (2018). Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves [en línea]. Science 361 (6399). Disponible en: https//:10.1126/science. aar5452.

Rapela, C.W. (1982). Aspectos geoquímicos y petrológicos del batolito de Achala, provincia de Córdoba. Revista Asociación Geológica Argentina. 37(3):313-330.

Rapela, C.W., Pankhurst, R. J, Casquet, C., Baldo, E., Saavedra, J., Galindo, C. (1998). Early evolution of the Proto-Andean margin of South America. Geology. 26 (8):707-710.

Rebelo, A.G., Boucher, C., Helme, N.A., Mucina, L., Rutherford, M.C. (2006). Fynbos biome. En Mucina, L. y Rutherford, M.C., editors. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia. Pretoria: South African National Biodiversity Institute, pp. 53–219.

Rey Benayas, J.M., Scheiner, S.M. (2002). Plant diversity, biogeography and environment in Iberia: Patterns and possible causal factors. Journal of Vegetation Science. 13: 245–258.

Rivas Goday, S. (1969). Flora serpentinícola española. Nota primera (Edafismos endémicos del Reino de Granada). Anales de la Real Academia de Farmacia. 30: 297-304, Madrid.

Roberts, B. A. & Proctor, J., editores. (1992). The ecology of areas with serpentinized rocks: A world view. Geobotany 17. Dordrecht, The Netherlands: Kluwer Academic. 424 p.

Rogers G. & Walker, S. (2002). Taxonomic and ecological profiles of rarity in the New Zealand vascular flora. New Zealand Journal of Botany. 40: 73–93.
Rosenzweig, M. (1995). Species Diversity in Space and Time. Cambridge University Press. 436 p.

Rundle, H.D. & Nosil, P. (2005). Ecological speciation. Ecological Letters. 8: 336–352.

Sadler, K.D. & G.E. Bradfield. (2010). Ecological facets of plant species rarity in rock outcrop ecosystems of the Gulf Islands, British Columbia. Botany. 88: 429–434

Salmerón-Sánchez E., Merlo, M.E, Medina-Cazorla, J.M, Pérez-García, F.J., Martínez-Hernández F., Garrido-Becerra, J.A., Mendoza-Fernández, A.J., Valle, F.,
Mota, J.F. (2014). Variability, genetic structure and phylogeography of the dolomitophilous species Convolvulus boissieri (Convolvulaceae) in the Baetic ranges, inferred from AFLPs, plastid DNA and ITS sequences. Botanical Journal of the Linnean Society.176:505–523

Sarthou, C. & Villiers, J. (1998). Epilithic plant communities on inselbergs in French Guiana. Journal Vegetation Science. 9: 847- 860.

Savolainen, O., Lascoux, M., Merilä, J. (2013). Ecological genomics: genes in ecology and ecology in genes. Nature Reviews Genetics. 14, 807–820.

Sawada, Y., Aiba, S., Takyu, M., Repin, R., Nais, J., Kitayama, K. (2015). Community dynamics over 14 years along gradients of geological substrate and topography in tropical montane forests on Mount Kinabalu, Borneo. Journal of Tropical Ecology. 31: 117–128.

Schiavo, H.F., Becker, A.R., Grumelli, M., Cantú, M.P. (2014). Calcretas del Suroeste de Córdoba. En: Suelos con acumulaciones calcáreas y yesíferas de Argentina, Imbellone, P., editor. Editorial Facultad de Agronomía, Buenos Aires. 1-24.

Schild, M., Siegesmund, S., Vollbrect, A., Mazurek, M. (2001). Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods. Geophysical Journal International. v. 146, p. 111–125.

Schimper, A.F.W. (1903). Plant geography upon a physiological basis. Fisher, W. R. translator. Groom, P. & Balfour, I. B., editores. Clarendon Press, Oxford, UK.

Schrodt, F., Bailey, J.J., Kissling, W.D., Rijsdijk, K.F., Seijmonsbergen, A.C., van Reed, D., Hjort, J., Lawley, R.S., Williams, Ch. N., Anderson, M.G., Beier, P., van Beukering, P., Boyd, D.S., Brilha, J., Carcavilla, L., Dahlin, K.M., Gill, J.C., Gordon, J.E., Gray, M., Grundy, M., Hunter, M.L., Lawler, J.J., Monge-Ganuzas,
M., Royse, K.R., Stewart, I., Record, S., Turner, W., Zarnetske, P.L., Field, R. (2019). To advance sustainable stewardship, we must document not only biodiversity but geodiversity. PNAS. 116 (33): -16158.

Sfragulla, J.A.: Jerez, D.G. y Bonalumi, A. (1999). Mármoles y otras rocas carbonáticas de Córdoba, En Zappettini, E.O., editor. Recursos Minerales de la República Argentina, Anales del Instituto de Geología y Recursos Minerales SEGEMAR, Buenos Aires, 35, 271–295.

Silver, W.L. et al. (2000). Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems. 3, 193-209.

Silvertown, J. (2004). Plant coexistence and the niche. Trends in Ecology and Evolution. 19, 605-611.

Skinner, M.W. & Pavlik, B.M., editores. (1994). Inventory of rare and endangered vascular plants of California. CNPS Special Publication No. 1 (Fifth
Edition). Sacramento. CA. vi + 338 pp.

Smith, J.M.B. & Cleef, A.M. (1988). Composition and origins of the world’s tropicalpine floras. Journal Biogeography. 15: 631-645.

Smyčka, J., Roquet, C., Renaud, J., Thuiller, W., Zimmerman, N.E., Lavergne, S. (2017). Disentangling drivers of plant endemism and diversification in the European Alps. A phylogenetic and spatially explicit approach. Perspectives in Plant Ecology, Evolution and Systematics. 28:19-27.

Speziale, K.L. & Ezcurra, C. (2015). Rock outcrops as potential biodiversity refugia under climate change in North Patagonia. Plant Ecology & Diversity. 8, 353–361.

Stein, A., Gerstner, K., Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecological Letters. 17:866–880.

Toivanen, M., Hjort, J., Heino, J., Tukiainen, H., Aroviita, J., J. Alahuhta. (2019). Is catchment geodiversity a useful surrogate of aquatic plant species richness? Journal of Biogeography. 46 (8): 1711-1722.

Torres-Ribeiro, K., Opazo-Medina, B.M., Rubio-Scarano, F. (2007) Species composition and biogeographic relations of the rock outcrop flora on the high plateau of Itatiaia, SE-Brazil. Revista Brasileira de Botânica. 30, 623–639.

Tukiainen, H., Bailey, J.J., Field, R., Kangas, K., Hjort, J. (2016). Combining geodiversity with climate and topography to account for threatened species richness [en línea]. Conservation Biology. Disponible en https//: 10.1111/ cobi.12799.

Unger, F. (1836). Über den Einfluß des Bodens auf die Vertheilung der Gewächse, nachgewiesen in der Vegetation des nordöstlichen Tirols[en línea]. Rohrmann u. Schweiger, Wien. Disponible en: https://scholar.google.com.ar/scholar?hl=es,as_sdt=0%2C5,as_vis=1,q=Unger+et+al.+1836,btnG=

Vergara-Gómez, D., Williams-Linera, G., Casanoves, F. (2019). Leaf functional traits vary within and across tree species in tropical cloud forest on rock outcrop versus volcanic soil [en línea]. Journal of Vegetation Science. 31. Disponible en: https//:10.1111/jvs.12826.

von Wettberg, E.J.B., Ray-Mukherjee, J, D’Adesky, N., Nesbeth, D., Sistla, S. (2014). The evolutionary ecology and genetics of stress resistance syndrome

(SRS) traits: Revisiting Chapin, Autumn and Pugnaire (1993). En Rajakaruna, N., Boyd, R.S. y Harris, T.B., editores. Environmental Research Advances. Hauppauge, NY: Nova Science. 201-226.

Wardle, P. (1991). Vegetation of New Zealand. Cambridge University Press. 672 p.

Warming, E. (1895). Oecology of Plants, an introduction to the study of plant communities. Clarendon Press, Oxford. 422p.

Warming, J. E. B., assisted by M. Vahl. (1909). Oecology of plants: an introduction to the study of plant communities. P. Groom and I. B. Balfour, translators. Clarendon Press, Oxford UK. 1977. Arno Press, New York, New York, USA

Watson, H. C. (1847-1859). Cybele Britannica, or British plants, and their geographical relations. Cuatro volúmenes. Longman, London, UK. 472 p.

Watson, H.C. (1833). Observations on the affinities between plants and subjacent rocks.
Magazine of Natural History. 6:424-427.

Wentworth, T.R. (1981). Vegetation on Limestone and Granite in the Mule Mountains. Arizona. Ecology. 62(2), 469–482.

Whittaker, R.H. & Niering, W.A. (1968). Vegetation of the Santa Catalina Mountains, Arizona: IV. limestone and acid soils. Journal of Ecology. 56, 523–544.

Willis, K.J. & Whittaker, R.J. (2002). Species diversity - Scale matters. Science. 295: 1245-1246.

Wiser, S. K. & Buxton, R. P. (2008). Context matters: Matrix vegetation influences native and exotic species composition on habitat islands. Ecology. 89: 380–391.

Wiser, S. K. & Buxton, R. P. (2009). Montane outcrop vegetation of Banks Peninsula, South Island, New Zealand. New Zealand Journal Ecology. 33 (2): 164-176.

Wiser, S.K., Peet, R. K., White, P.S. (1996). High-elevation rock outcrop vegetation of the Southern Appalachian Mountains. Journal of Vegetation Science. 7: 703-722.
Wohlgemuth, T. (1998). Modelling floristic species richness on a regional scale: a case study in Switzerland. Biodiversity and Conservation. 7: 159–177.

Zak, M.R., Cantero, J.J., Hoyos, L., Núñez, C. y Cabido, M. (2019) Vegetación. En Giayetto, O. y Zak, M.R., editores. Hacia el Ordenamiento territorial de la provincia de Córdoba: bases ambientales. Córdoba, Argentina: Báez Ediciones, pp. 55–91.

Zhao, J. (1998). Rock mass hydraulic conductivity of the Bukit Timah granite, Singapore. Engineering Geology. 50 (1-2): 211-216.

Zwieniecki M. & Newton, M. (1995). Roots growing in rock fissures: their morphological adaptation [en línea]. Plant Soil 172:181187. Disponible en https//: l0.1007/BF0001
Publicado
2021-12-22
##submission.howToCite##
CANTERO, Juan José et al. La vida vegetal en hábitats extremos: plantas de afloramientos rocosos. Ab Intus, [S.l.], n. 8, p. 37-71, dec. 2021. ISSN 2618-2734. Disponible en: <http://www.ayv.unrc.edu.ar/ojs/index.php/Ab_Intus/article/view/179>. Fecha de acceso: 20 jan. 2022
Sección
Revisiones Bibliográficas